411. Pteridines. Part IV.* Derivatives of 2:4-Diaminopteridine and Related Compounds.

By W. R. BOON.

A series of derivatives of 2: 4-diaminopteridine having one or both aminogroups substituted, has been prepared by condensation of the appropriate tetra-aminopyrimidines and α -diketones. Substances with different substituents in positions 6 and 7 have been prepared from 5-arylazo-6-(α -pyrimidylamino)-ketones. Recorded preparations of disubstituted aminopteridines from aminohydroxy- and aminomercapto-pteridines are, in some cases, shown to be erroneous.

The coupling of pyrimidine derivatives with aryldiazonium salts is shown to be a reaction more widely applicable than is generally known.

SEVERAL derivatives of 2: 4-diaminopteridine are known to possess antimalarial activity (for a summary see Potter and Henshall ¹). It was considered of interest to prepare a series of related derivatives of 2: 4-diamino-6: 7-diphenylpteridine (I; $X = Y = NH_2$, R = R' = Ph) in which the primary amino-groups were progressively substituted by methyl. Antimalarial activity was immediately lost, but the compounds were active against experimental schistosomiasis in mice. Further modifications of the substituents X, Y, R, and R' always lowered the activity. The only other substances examined showing appreciable activity were those in which X = Y = NHMe, R = R' = p-MeO·C₆H₄ and *m*- or p-C₆H₄Cl.

Substances (I) in which R = R' are most conveniently prepared by condensing a tetraaminopyrimidine with an α -diketone, the 2- and 4-amino-groups being substituted as required. The tetra-aminopyrimidines are obtained by reducing a substance (II) in which X and Y are amino- or substituted amino-groups and Z is, *e.g.*, arylazo, nitro or nitroso.

¹ Potter and Henshall, J., 1956, 2000.

^{*} Part III, J., 1951, 1497.

4:5:6-Triamino-2-dimethylaminopyrimidine was the only known substance required ^{2,3} but the methods by which it was obtained are not suitable for the preparation of compounds where the 4-amino-group also is substituted.

For the preparation of 2-dimethylamino-derivatives, 2-dimethylamino-4: 6-dihydroxy-5-nitropyrimidine was readily obtained by nitration of 2-dimethylamino-4: 6-dihydroxypyrimidine,⁴ but, although it readily gave the 4:6-dichloro-compound, stepwise replacement of the chlorine atoms by amino-groups proved difficult, so that approach was abandoned.

When a 2-aming-group was required, 2:6-diamino-4-chloro-5-p-chlorophenylazopyrimidine proved a convenient starting material.⁵ 2-Amino-4-chloro-5-p-chlorophenylazo-6-methylamino- and 4-amino-6-chloro-5-p-chlorophenylazo-2-methylamino-pyrimidine were also readily obtained. Lythgoe, Todd, and Topham⁶ state that only those pyrimidine compounds which contain tautomerisable hydrogen atoms on at least two of the substituents in positions 2, 4, and 6 can be caused to couple with diazonium salts. Polonovski and Pesson,⁷ however, state that for coupling to occur with a 4-amino- or 4-hydroxy-pyrimidine there must be a second polar group in position 2; they describe, *inter alia*, the coupling, in alkaline solution, of 2-dimethylamino-4-hydroxy-6-methylpyrimidine with benzenediazonium chloride. This procedure has now been used for the preparation of 4-chloro-5-p-chlorophenylazo-2-dimethylamino-6-hydroxypyrimidine (III; $X = NMe_2$, Y = Cl, Z = OH) and the corresponding 2-methylamino-compound. On the other hand, coupling of 4-amino-6chloro-2-dimethylamino- and 2-amino-4-chloro-6-dimethylamino-pyrimidine with p-chlorobenzenediazonium chloride occurred most readily under mildly acid conditions, giving the 5-p-chlorophenylazo-compounds. Coupling was also satisfactory with a number of other diazonium salts (see Table 1 and B.P. 763,041). 4-Chloro-5-p-chlorophenylazo-2: 6-bisdimethylaminopyrimidine and 5-p-chlorophenylazo-2-dimethylamino-4-hydroxy-6-methylpyrimidine were obtained similarly.

The 4-chlorine was readily replaced when 2:6-diamino-5-arylazopyrimidines were heated with ammonia or an amine. In preliminary experiments, because of the low solubility of the starting materials in more conventional solvents, dimethylformamide was used as an additional solvent in reaction with alcoholic ammonia, but the ammonia then reacted preferentially with the amide so that the chlorine atom was replaced by a dimethylaminogroup; thus, the compounds (III; X = NHMe, $Y = NH_2$, Z = Cl; X = Y = NHMe, Z = Cl; $X = NH_2$, Y = NHMe, Z = Cl) gave the products in which $Z = NMe_2$, identical with those obtained by the direct action of alcoholic dimethylamine on the starting materials.

Reduction of the azo-compounds by hydrogen in presence of Raney nickel was smooth in every case. Condensation of the products with symmetrical α -diketones proceeded as expected. The amine (II; $X = Z = NH_2$, Y = NHMe) with benzil gave 2-amino-4methylamino-6:7-diphenylpteridine (I; $X = NH_2$, Y = NHMe, R = R' = Ph), m. p. 272°, which Paget 8 has shown to be preferentially absorbed on cardiac muscle. Cain, Taylor, and Daniel⁹ state that this substance has m. p. 237-238°; they heated under reflux a mixture of 2-amino-4-hydroxy-6: 7-diphenylpteridine, phosphorus oxychloride, and

- ⁶ Lythgoe, Todd, and Topham, J., 1944, 315. ⁷ Polonovski and Pesson, Bull. Soc. chim. France, 1948, **15**, 688.
- Paget, J. Path. Bact., in the press.
- ⁹ Cain, Taylor, and Daniel, J. Amer. Chem. Soc., 1949, 71, 892.

<sup>Roth, Smith, and Hultquist, J. Amer. Chem. Soc., 1951, 78, 2864.
Andrews, Anand, Todd, and Topham, J., 1949, 2490.
Boon, J., 1952, 1532.
B.P. 677,342.</sup>

phosphorus pentachloride and heated the crude product at 150° with alcoholic methylamine; repetition of this work gave a product of m. p. 253-259°, depressed on admixture with a sample prepared as above, and shown by fractional extraction with acid to be a mixture of 2:4-bismethylamino-6:7-diphenylpteridine (I; X = Y = NHMe, R = R' =Ph) and the methylamide of 3-amino-5:6-diphenylpyrazine-2-carboxylic acid. However, reaction with alcoholic methylamine at <120° gave the expected 2-amino-4-methylamino-6:7-diphenylpteridine.

Likewise 4-amino-2-methylamino-6: 7-diphenylpteridine (I; X = NHMe, $Y = NH_2$, R = R' = Ph) obtained from (II; X = NHMe, $Y = Z = NH_2$) and benzil had m. p. 307° although Taylor and Cain ¹⁰ state that the substance obtained from the action of methylamine on 4-amino-2-mercapto-6: 7-diphenylpteridine (I; X = SH, $Y = NH_2$, R = R' = Ph) has m. p. 264—265°. Repetition showed that their substance was 2:4-bismethylamino-6: 7-diphenylpteridine. Further, the product, m. p. 192—195°, described by these authors as (I; $X = Me_2N$, $Y = NH_2$, R = R' = Ph) is a mixture of this substance which has m. p. 239° and (I; $X = Y = NMe_2$, R = R' = Ph), m. p. 210°, both of which have been prepared by unambiguous methods during the present work.

For the preparation of substances containing only one substituent at position 6 or 7, or with different substituents in these positions, reductive cyclisation of an α -(5-arylazo-4pyrimidylamino)-ketone appeared the most satisfactory unambiguous method. The condensation of (III; $X = Y = NH_2$, Z = Cl) with glycine ethyl ester has already been recorded.⁵ Analogous condensations were slower as the amino-groups were progressively substituted, and still slower when the second reactant was an α -amino-ketone so that the use of a protected derivative such as a semicarbazone or acetal was essential. In contrast, a 4hydroxyl group increased the reactivity of the 6-chlorine atom, so that the hydroxy-compound (III; $X = NMe_2$, Y = OH, Z = Cl) condensed more readily than the primary diamine (III; $X = Y = NH_2$, Z = Cl). 4-Chloro-5-p-chlorophenylazo-2-dimethylamino-6-hydroxypyrimidine (III; $X = NMe_2$, Y = OH, Z = Cl) with ω -aminoacetophenone semicarbazone and α -amino- α -phenylacetaldehyde dimethyl acetal gave products which on hydrolysis afforded the ketone and aldehyde (III; $X = NMe_2$, Y = OH, Z =NH·CH₂·COPh and NH·CHPh·CHO). These were reduced to 2-dimethylamino-7:8dihydro-4-hydroxy-6- and -7-phenylpteridines (IV; R = Ph, R' = H; R = H, R' = Ph) respectively which were oxidised to the pteridines with alkaline permanganate. The last two compounds were also obtained by condensing 4 : 5-diamino-2-dimethylamino-6-hydroxypyrimidine with phenylglyoxal at pH l (6-phenyl compound) or 4 (7-phenyl compound). In the latter case, 4-amino-2-dimethylamino-6-hydroxy-5-phenacylideneaminopyrimidine (II; $X = NMe_2$, Y = OH, Z = N:CH:COPh) was first obtained and then cyclised to the pteridine by heating it with sodium hydroxide.

The 6- and the 7-phenyl compound were converted into the 2:4-bisdimethylaminopteridines (III; $X = Y = NMe_2$, R = Ph, R' = H; $X = Y = NMe_2$, R = H, R' = Ph) by phosphorus oxychloride under reflux, the crude chloro-compounds being treated with alcoholic dimethylamine. From the 6-phenylpteridine some 4-ethoxy-compound (I; $X = NMe_2$, Y = EtO, R = Ph, R' = H) was obtained also. The same bisdimethylaminopteridines were obtained by condensing 4:5-diamino-2:6-bisdimethylaminopyrimidine (II; $X = Y = NMe_2$, $Z = NH_2$) with phenylglyoxal under the conditions used for the corresponding hydroxy-compounds; in this case though, the intermediate substance corresponding to the 7-phenyl compound was not isolated. As a further check on the identity of the products both 2:4-bisdimethylamino-compounds were converted into the corresponding 2-dimethylamino-4-hydroxy-compounds by hydrolysis with hydrochloric acid.

Although this series of transformations showed that condensation of phenylglyoxal could be directed to give predominantly one or the other of the two possible pteridines, it was considered unlikely that this would be possible with an α -diketone in which there is a

¹⁰ Taylor and Cain, J. Amer. Chem. Soc., 1952, 74, 1644.

smaller difference in the reactivity of the keto-groups. The stepwise synthesis of such pteridines appeared essential in these cases.

Although both 4:6-dichloro-2-methylamino- and -2-dimethylamino-pyrimidine condensed smoothly with glycine ethyl ester to give the amines (V; R = NHMe or NMe_2 , $R' = NH\cdot CH_2 \cdot CO_2Et$), no satisfactory products could be obtained with α -aminodeoxybenzoin.

Because of the greater reactivity of the chlorine atoms in trichloropyrimidine, reaction of this substance with an α -amino-ketone appeared to offer a suitable starting point provided the two products could be separated. Trichloropyrimidine with ω -amino- ω -p-chlorophenyl-acetophenone gave a mixture which could not readily be separated but with alcoholic dimethylamine gave a readily separable mixture of amines (V; R = NMe₂, R' = p-C₆H₄Cl·CHBz·NH and vice versa). The subsequent stages in the conversion of the former into the diamine (I; X = Y = NMe₂, R = Ph, R' = p-C₆H₄Cl) proceeded smoothly. In the reaction between trichloropyrimidine and aminodeoxybenzoin, the product (V; R = Cl, R' = Ph·CHBz·NH) separated directly from the reaction mixture.

EXPERIMENTAL

2-Dimethylamino - 4: 6-dihydroxy - 5-nitropyrimidine.—2-Dimethylamino - 4: 6-dihydroxypyrimidine (70 g.),⁴ ground to pass a 30-mesh sieve, was added with stirring during 45 min. to a mixture of glacial acetic acid (280 c.c.) and nitric acid (d 1.5; 65 c.c.) at 20—25°. After a further 45 minutes' stirring the mixture was poured into water (1350 c.c.). The solid was separated, washed free from acid, and dried (81 g.). No suitable solvent could be found for crystallisation and the *nitro-compound* was analysed directly (Found : C, 36·1; H, 4·4; N, 27.7. C₆H₈O₄N₄ requires C, 36·0; H, 4·0; N, 28·0%).

4: 6-Dichloro-2-dimethylamino-5-nitropyrimidine.—2-Dimethylamino-4: 6-dihydroxy-5nitropyrimidine (20 g.), phosphorus oxychloride (60 c.c.), and dimethylaniline (20 c.c.) were heated to 105° (bath-temperature) whereupon a vigorous reaction set in. When this had moderated heating was continued for 1 hr. After removal of the excess of phosphorus oxychloride under reduced pressure the residue was treated with ice (200 g.), then the suspension was extracted with ether (4×50 c.c.). The extract was dried (MgSO₄), filtered, and evaporated. The residue, crystallised from light petroleum (b. p. 60—80°) (yield, 3·7 g.), had m. p. 117—120°. The compound was purified for analysis by sublimation at 150°/19 mm. (Found: C, 30·6; H, 2·5; N, 23·6; Cl, 29·9. C₈H₈O₂N₄Cl₂ requires C, 30·4; H, 2·5; N, 23·6; Cl, 29·9%).

4-Amino-6-chloro-2-dimethylamino-5-nitropyrimidine and 4: 6-Diamino-2-dimethylamino-5nitropyrimidine.—4: 6-Dichloro-2-dimethylamino-5-nitropyrimidine (14 g.), benzene (90 c.c.), and ammonia (d 0.880) (10 c.c.) were shaken overnight and filtered. The residue of the diamine (4·2 g.), after two crystallisations from dioxan, had m. p. 249—250° (Found : C, 36·6; H, 5·1; N, 42·5. $C_6H_{10}O_2N_6$ requires C, 36·6; H, 5·2; N, 42·75%). Evaporation of the filtrate gave a residue of indefinite m. p. from which the monoamino-compound (0·5 g.) was obtained by chromatography on alumina (120 g.) in benzene (30 c.c.) and crystallisation from ethyl acetate-light petroleum (b. p. 60—80°) and had m. p. 132° (Found : C, 33·0; H, 3·9; N, 32·6; Cl, 15·9. $C_6H_8O_3N_5Cl$ requires C, 33·1; H, 3·7; N, 32·2; Cl, 16·4%).

4: 6-Dihydroxy-2-methylaminopyrimidine.—To a solution of sodium (91 g.) in methanol (2 l.) methylguanidine sulphate (509 g.) was added and the mixture heated under reflux for 30 min. with stirring. Ethyl malonate was then added and heating was continued for 6 hr. After cooling, the mixture was diluted with water (5 l.), treated with carbon, and filtered. Acidification to litmus with acetic acid precipitated the dihydroxypyrimidine (183 g.) immediately. After this had been collected the mother-liquors deposited a second product (15 g.), presumably 2-amino-1: 4:5: 6-tetrahydro-1-methyl-4: 6-dioxopyrimidine, m. p. >360°, purified for analysis by dissolution in aqueous sodium hydroxide, treatment with charcoal, and reprecipitation with acetic acid (Found: C, 42·3; H, 5·3; N, 28·7. $C_5H_7O_2N_3$ requires C, 42·5; H, 5·0; N, 29·8%).

4: 6-Dichloro-2-methylaminopyrimidine.—4: 6-Dihydroxy-2-methylaminopyrimidine (93 g.)

and phosphorus oxychloride (510 c.c.) were heated under reflux for 1 hr. After filtration through sintered-glass the solution was poured on 32% aqueous sodium hydroxide (2250 c.c.) and ice. The solid which separated was washed with water and crystallised from methanol. The product (88 g.) had m. p. 164° undepressed on admixture with an authentic sample.¹¹

4-Chloro-6-methoxy-2-methylaminopyrimidine.—4:6-Dichloro-2-methylaminopyrimidine (130 g.) was heated in a solution of sodium (168 g.) in methanol (570 c.c.) for 12 hr. The *ether* which separated on cooling was collected, washed with water, and crystallised from methanol; it (95 g.) had m. p. 153° (Found : C, 41.8; H, 4.7; N, 24.2; Cl, 20.3. $C_{6}H_{8}ON_{3}Cl$ requires C, 41.5; H, 4.6; N, 24.2; Cl, 20.5%).

4-Chloro-2-dimethylamino-6-methoxypyrimidine, m. p. 62° after sublimation ($55^{\circ}/0.1$ mm.), was obtained similarly (81%) from 4 : 6-dichloro-2-dimethylaminopyrimidine at room temperature (Found : C, 44.7; H, 5.4; N, 22.5; Cl, 19.2. C₇H₁₀ON₃Cl requires C, 44.8; H, 5.3; N, 22.4; Cl, 18.9%).

4-Chloro-6-hydroxy-2-methylaminopyrimidine.—4-Chloro-6-methoxy-2-methylaminopyrimidine (10 g.) was heated on the steam-bath for 30 min. with concentrated hydrochloric acid (50 c.c.). The hydroxy-compound which separated on cooling was collected and purified by dissolution in alkali, etc., as above, and had m. p. 265° (decomp.) (5.5 g.) (Found : C, 38.3; H, 4.1; N, 26.2. $C_5H_6ON_3Cl$ requires C, 37.6; H, 3.8; N, 26.3%).

4-Chloro-2-dimethylamino-6-hydroxypyrimidine, m. p. 217°, was obtained similarly (95%), from 4-chloro-2-dimethylamino-6-methoxypyrimidine (Found : C, 41.9; H, 4.9; N, 23.9; Cl, 21.0. $C_{9}H_{8}ON_{3}Cl$ requires C, 41.5; H, 4.6; N, 24.2; Cl, 20.5%).

2-Amino-4-dimethylamino-6-methylpyrimidine.—2-Amino-4-chloro-6-methylpyrimidine (28.7 g.) and dimethylamine (78 c.c. of a 19.5% w/v solution in ethanol) were heated at 110—120° for 17 hr. The diamine, crystallised from benzene, had m. p. 172° (165 g.) (Found : C, 55.8; H, 8.4; N, 37.1. $C_7H_{12}N_4$ requires C, 55.3; H, 7.9; N, 36.8%).

 α -(2: 4-Dichloro-6-pyrimidylamino)deoxybenzoin.— α -Aminodeoxybenzoin hydrochloride (47 g.), dissolved in water (750 c.c.), was basified with ammonia at 0°. The precipitated base was collected, drained as dry as possible, added to trichloropyrimidine (35 g.) in ethanol (750 c.c.) and set aside at room temperature for 2 days. The *ketone* (12 g.) was collected and crystallised from ethanol; it had m. p. 165° (Found : C, 60·1; H, 3·8; N, 11·8; Cl, 19·9. C₁₈H₁₈ON₃Cl₂ requires C, 60·4; H, 3·6; N, 11·7; Cl, 19·85%).

ω-(4-Chloro-2-dimethylamino-6-pyrimidylamino)-ω-p-chlorophenylacetophenone and ω-(4-Chloro-6-dimethylamino-2-pyrimidylamino)-ω-p-chlorophenylacetophenone.—ω-Amino-ω-p-chlorophenylacetophenone hydrochloride (28.5 g.) was converted into the base and caused to react with trichloropyrimidine (9 g.) under the conditions given above. The crude product which could not be purified readily was heated under reflux for 3 hr. with dimethylamine in ethanol (10 c.c. of 19.5% w/v solution) and ethanol (10 c.c.). On evaporation of the solution to half its volume a solid, m. p. 75—95°, was obtained. Crystallisation and recrystallisation from methanol gave the 2-dimethylaminopyrimidine, m. p. 151—152° (Found : C, 60.3; H, 4.8; N, 13.9; Cl, 17.5. C₂₀H₁₈ON₄Cl₂ requires C, 59.8; H, 4.5; N, 13.9; Cl, 17.7%). The 6-dimethylamino-pyrimidine, m. p. 181—182° (Found : C, 60.1; H, 4.7; N, 14.0%), was obtained by concentration of the mother-liquors and recrystallisation from ethanol. A small quantity of another substance, m. p. 239—240°, believed to be 2:5-di-p-chlorophenyl-3:6-diphenylpyrazine, was also obtained.

Derivatives of 2: 4-Diamino-6-chloropyrimidine.—(a) From 2-amino(or substituted amino)-4: 6-dichloropyrimidine. 2-Amino-4-chloro-6-dimethylaminopyrimidine. 2-Amino-4: 6-dichloropyrimidine (33 g.) was heated with dimethylamine in ethanol (175 c.c. of 19.5% w/v solution) for 3 hr. after the initial reaction had subsided. The diamino-compound (24 g.) which separated on cooling was collected, crystallised from methanol and then from benzene, and had m. p. 164—165° (Found: C, 41.9; H, 5.0; N, 32.5; Cl, 20.8. $C_6H_9N_4Cl$ requires C, 41.7; H, 5.2; N, 32.5; Cl, 20.5%).

The following were obtained similarly (in 70% yield) from the appropriate derivative of 2amino-4: 6-dichloropyrimidine and an ethanol solution of glycine ethyl ester:

Ethyl 4-chloro-2-methylamino-6-pyrimidylaminoacetate, m. p. 167° (Found : C, 43.6; H, 4.9; N, 22.8; Cl, 14.7. $C_{9}H_{13}O_{2}N_{4}Cl$ requires C, 44.2; H, 5.3; N, 22.9; Cl, 14.5%).

Ethyl 4-chloro-2-dimethylamino-6-pyrimidylaminoacetate, m. p. 121° (Found : C, 46.5; H, 5.6; N, 21.0; Cl, 14.2. $C_{10}H_{16}O_2N_4Cl$ requires C, 46.4; H, 5.8; N, 21.6; Cl, 13.7%).

¹¹ Winkelmann, J. prakt. Chem., 1927, 115, 292.

(b) From 2: 4-dichloro-6-methylaminopyrimidine. 4-Chloro-2-ethylamino-6-methylaminopyrimidine. 2: 4-Dichloro-6-methylaminopyrimidine (36 g.), ethanol (200 c.c.), and aqueous ethylamine (50 g. of 70% w/w solution) were heated under reflux for 6 hr. After removal of the ethanol the mixture was diluted with water and extracted with ether. After drying, the ether was removed and the residue was dissolved in absolute ethanol (70 c.c.). Concentrated sulphuric acid (9 c.c.) was added until the mixture was acid to Congo-red; dry ether was then added to produce a permanent turbidity, the diamine sulphate separating (34 g.). After recrystallisation from ethanol-ether it had m. p. 148° (Found : C, 29.9; H, 5.0; N, 19.4; Cl, 12.5; S, 11.2. $C_7H_{11}N_4Cl,H_2SO_4$ requires C, 29.5; H, 4.6; N, 19.7; Cl, 12.45; S, 11.25%).

The following were obtained similarly: 4-chloro-2-dimethylamino-6-methylaminopyrimidine, m. p. 78° (from light petroleum) (Found: C, 45.5; H, 6.2; N, 30.6; Cl, 19.0. $C_7H_{11}N_4Cl$ requires C, 45.1; H, 5.9; N, 30.0; Cl, 19.0%); 4-chloro-2-diethylamino-6-methylaminopyrimidine sulphate, m. p. 148—149° (from ethanol-ether) (Found: C, 34.5; H, 5.6; N, 18.1; Cl, 11.6; S, 10.1. $C_9H_{15}N_4Cl,H_9SO_4$ requires C, 34.6; H, 5.4; N, 17.9; Cl, 11.4; S, 10.2%); 4-chloro-6methylamino-2-piperidinopyrimidine, m. p. 118° (from methanol) (Found: C, 53.3; H, 6.8; N, 24.1; Cl, 15.5. $C_{10}H_{15}N_4Cl$ requires C, 53.0; H, 6.6; N, 24.7; Cl, 15.7%); 4-chloro-2-2'dimethylamino-6-methylaminopyrimidine, m. p. 99° (from ethyl acetate-light petroleum) (Found: C, 47.1; H, 6.9; N, 29.6; Cl, 15.5. $C_9H_{16}N_5Cl$ requires C, 47.1; H, 6.9; N, 30.5; Cl, 15.5%).

4-Chloro-5-p-chlorophenylazo-2-dimethylamino-6-hydroxypyrimidine.—To a solution of 4chloro-2-dimethylamino-6-hydroxypyrimidine (17.5 g.) dissolved in water (500 c.c.) containing 2N-sodium hydroxide (60 c.c.) and sodium hydrogen carbonate (12.6 g.), a solution of p-chlorobenzenediazonium chloride (from 12.75 g. of p-chloroaniline) was added. After overnight stirring the *azo-compound* was collected, washed with water, ethanol, and ether, and crystallised from dioxan; it had m. p. 220—222° (decomp.) (20 g.) (Found: C, 46.4; H, 3.5; N, 22.7; Cl, 22.6. $C_{12}H_{11}ON_5Cl_2$ requires C, 46.2; H, 3.5; N, 22.5; Cl, 22.8%). 4-Chloro-5-p-chlorophenylazo-6-hydroxy-2-methylaminopyrimidine was obtained similarly but could not be purified without decomposition. The washed crude material was satisfactory for further use.

5-p-Chlorophenylazo-2-dimethylamino-4-hydroxy-6-methylpyrimidine.—M/40-p-Chlorobenzenediazonium chloride solution (500 c.c.) and crystalline sodium acetate (46 g.) were added with stirring to a solution of 2-dimethylamino-4-hydroxy-6-methylpyrimidine (3.8 g.) in water (500 c.c.). After 16 hr. the azo-compound was collected, washed, dried in air, and recrystallised from butanol, then having m. p. 216—217° (5.5 g.) (Found : C, 53.4; H, 4.7; N, 24.2. $C_{12}H_{14}ON_5Cl$ requires C, 53.5; H, 4.8; N, 24.1%).

2: 6-Diamino-5-arylazo-4-chloropyrimidines.—The preparation of 4-chloro-5-p-chlorophenylazo-2: 6-bisdimethylaminopyrimidine is typical. M/40-p-Chlorophenyldiazonium chloride (50 c.c.) and crystalline sodium acetate (40 g.) were added with stirring to a solution of 4-chloro-2: 6-bisdimethylaminopyrimidine (5·0 g.) in acetic acid (70 c.c.) diluted with water (200 c.c.). The dark red oil which separated changed to a granular solid after 48 hours' stirring. The azocompound was then collected, washed with water, and crystallised twice from ethanol; it (5 g.) had m. p. 91° (Found: C, 49·7; H, 4·6; N, 24·7; Cl, 20·9. $C_{14}H_{16}N_6Cl_2$ requires C, 49·6; H, 4·7; N, 24·8; Cl, 20·9%). Details of other compounds in this series are given in Table 1 and in B.P. 763,041.

2:4:6-Triamino-5-arylazopyrimidine Derivatives.—The preparation of 4:6-diamino-5-pchlorophenylazo-2-dimethylaminopyrimidine is typical. 4-Amino-6-chloro-5-p-chlorophenylazo-2-dimethylaminopyrimidine (2 g.) and saturated alcoholic ammonia (40 c.c.) were heated at 150—160° for 36 hr. The triamino-compound (1.75 g.) which separated on cooling was crystallised from butanol; it had m. p. 272—273° (Found : C, 49·1; H, 4.8; Cl, 12·2. C₁₄H₁₄N₇Cl requires C, 49·4; H, 4.8; Cl, 12·2%). The hydrochloride was obtained as follows : p-chlorobenzenediazonium chloride [from p-chloroaniline (6·5 g.), water (60 c.c.), concentrated hydrochloric acid (11 c.c.), and sodium nitrite (3·5 g.)] was added with stirring to 4: 6-diamino-2dimethylaminopyrimidine (7·5 g.) in glacial acetic acid (70 c.c.). The product separated rapidly and sufficient 50% acetic acid was added to keep the mixture mobile. The hydrochloride (14·1 g.) was collected after 4 hr., washed with water and ethanol; it had m. p. 301° (decomp.) when crystallised from 80% formic acid (Found : C, 44·6; H, 4·4; N, 29·9; Cl, 21·6. C₁₂H₁₄N₇Cl,HCl requires C, 44·0; H, 4·6; N, 29·9; Cl, 21·5%). The free base identical with the above was obtained by trituration with ammonia.

Table 2 gives details of substances containing an unsubstituted 4-amino-group prepared by

reaction of the corresponding 4-chloro-compounds (I) with ammonia or the appropriate amine. Further examples are given in B.P. 763,042.

5-p-Chlorophenylazo-4-dimethylamino-2: 6-bismethylaminopyrimidins.—4-Chloro-5-p-chlorophenylazo-2: 4-bismethylaminopyrimidine (5 g.), dimethylformamide (100 c.c.), and 10% ethanolic ammonia (20 c.c.) were heated at 60° for 64 hr. The *amine* which separated on addition of water crystallised from ethanol and had m. p. 145° (4 g.) (Found : C, 52·4; H, 5·5. C₁₄H₁₈N₇Cl requires C, 52·6; H, 5·5%). The same product (m. p. and mixed m. p.) was obtained by reaction between 4-chloro-5-p-chlorophenylazo-2: 6-bismethylaminopyrimidine and methanolic dimethylamine under standard conditions.

2-Amino-5-p-chlorophenylazo-4-dimethylamino-6-methylaminopyrimidine, m. p. 192° (Found : C, 51·4; H, 5·5. $C_{13}H_{16}N_{7}Cl$ requires C, 51·1; H, 5·2%), was obtained by reaction between 2-amino-4-chloro-5-p-chlorophenylazo-6-methylaminopyrimidine and alcoholic ammonia in dimethylformamide.

5-p-Chlorophenylazo-2:4:6-trismethylaminopyrimidine, m. p. 155° (Found: C, 51.4; H, 5.3; N, 31.3; Cl, 11.6. $C_{13}H_{16}N_{2}Cl$ requires C, 51.1; H, 5.3; N, 31.1; Cl, 11.6%), was obtained from 4-chloro-5-p-chlorophenylazo-2:6-bismethylaminopyrimidine and methylamine in dimethylformamide.

Tetra-aminopyrimidines.—The following procedure for the preparation of 2:4:5-triamino-4-methylaminopyrimidine is typical: 2:4-Diamino-5-p-chlorophenylazo-6-methylaminopyrimidine (5 g.) in ethanol (75 c.c.) was reduced by hydrogen in presence of Raney nickel (initial pressure 47 atm.) at 90—95° for 5 hr. The mixture was then acidified with acetic acid (4 c.c.) and filtered through Hyflo Supercel, and the residue washed with water. The combined filtrate and washings were evaporated to dryness under reduced pressure in an atmosphere of nitrogen. The brown residue was triturated with ether, filtered, washed with more ether to remove p-chloroaniline, dissolved in water (10 c.c.), and acidified to Congo-red with sulphuric acid. The sulphate was precipitated by addition of ethanol and crystallised from water.

No satisfactory analytical results could be obtained for 2:5-diamino-6-diethylamino-4dimethylaminopyrimidine oxalate, m. p. 221° (decomp.), although it condensed normally with benzil to give the corresponding diphenylpteridine.

Details of other compounds prepared by this method are given in Table 3 and in B.P. 763,120.

5-Arylazopyrimidylamino-aldehydes and -ketones and Derivatives.—5-p-Chlorophenylazo-2dimethylamino-4-methylamino-6-pyrimidylaminoacetaldehyde diethyl acetal. Aminoacetaldehyde diethyl acetal (15 g.) and 4-chloro-5-p-chlorophenylazo-2-dimethylamino-4-methylaminopyrimidine (17.5 g.) were heated under reflux for 24 hr. in dioxan (250 c.c.). The residue obtained on evaporation was triturated with ethanol and filtered. The acetal (10 g.), crystallised from light petroleum (b. p. 60—80°), had m. p. 95° (Found : C, 54.3; H, 6.4; N, 24.0; Cl, 8.0. C₁₉H₂₈O₂N₇Cl requires C, 54.1; H, 6.7; N, 23.3; Cl, 8.4%).

 α -5-p-Chlorophenylazo-2: 4-bisdimethylamino-6-pyrimidylamino- α -phenylacetaldehyde Dimethyl Acetal.— α -Aminophenylacetaldehyde dimethyl acetal (11 g.) and 4-chloro-5-p-chlorophenylazo-2: 6-bisdimethylaminopyrimidine in dioxan (250 c.c.) were heated under reflux for 4 hr. After removal of the solvent, the acetal (1.9 g.) was crystallised from butanol; it had m. p. 151° (Found: C, 59.5; H, 6.3; Cl, 7.7. C₂₄H₃₀O₂N₇Cl requires C, 59.6; H, 6.2; Cl, 7.4%).

 α -(5-p-Chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)- α -phenylazetaldehyde dimethyl acetal, m. p. 242° (from butanol), was obtained similarly from 4-chloro-5-p-chlorophenyl-azo-2-dimethylamino-6-hydroxypyrimidine (Found : C, 58.0; H, 5.6; N, 18.4; Cl, 7.8. C₁₂₁H₂₅O₃N₆Cl requires C, 57.8; H, 5.5; N, 18.4; Cl, 7.8%).

5-p-Chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylaminoacetone.—Aminoacetone semicarbazone hydrochloride (11 g.) was stirred for 2 hr. with a solution of cold sodium ethoxide (from sodium, 1.5 g., and ethanol, 60 c.c.), 4-chloro-5-p-chlorophenylazo-2-dimethylamino-6-hydroxypyrimidine (9.3 g.) in dimethylformamide (140 c.c.) was then added, and stirring was continued for a further 15 hr. The semicarbazone (11 g.), m. p. 243°, was collected, washed well with water and ethanol, and dissolved in glacial acetic acid (25 c.c.) and 2N-hydrochloric acid (150 c.c.). After being kept overnight the mixture was filtered and evaporated to dryness. The hydrochloride (6.6 g.), crystallised from ethanol, had m. p. 217° (Found : C, 46.6; H, 4.9; N, 21.3. $C_{18}H_{17}O_2N_6Cl$,HCl requires C, 46.8; H, 4.7; N, 21.8%).

The following were obtained similarly :

ω-(5-p-Chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)acetophenone hydrochloride monohydrate, m. p. 229° (from ethanol) (Found : C, 51·4; H, 4·7; N, 18·0; Cl, 15·4. C₂₀H₁₉O₂N₆Cl,HCl,H₂O requires C, 51·6; H, 4·7; N, 18·0; Cl, 15·3%); semicarbazone, m. p. 263° (decomp.) (from dimethylformamide-ethanol) (Found : C, 53·5; H, 4·9; N, 28·0; Cl, 7·7. C₂₁H₂₂O₂N₉Cl requires C, 53·9; H, 4·7; N, 27·0; Cl, 7·6%).

4-Chloro-ω-(5-p-chlorophenylazo-4-hydroxy-2-methylamino-6-pyrimidylamino)acetophenone hydrochloride, m. p. 258° (decomp.) (Found : C, 48.8; H, 3.8; N, 17.1. $C_{19}H_{16}O_2N_6Cl_2$,HCl requires C, 48.8; H, 3.6; N, 17.9%); semicarbazone, m. p. 264° (from dimethylformamide) (Found : C, 49.3; H, 3.9. $C_{20}H_{19}O_2N_9Cl_2$ requires C, 49.2; H, 3.9%).

4-Chloro- ω -(5-p-chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)acetophenone, m. p. 244° (decomp.) (from dimethylformamide-ethanol) (Found : C, 54·2; H, 4·0; N, 18·8; Cl, 16·0. $C_{20}H_{18}O_2N_6Cl_2$ requires C, 53·9; H, 4·0; N, 18·9; Cl, 16·0%); semicarbazone, m. p. 255° (decomp.) (from dimethylformamide-ethanol) (Found : C, 50·7; H, 4·3; N, 24·7; Cl, 14·6. $C_{21}H_{21}O_2N_6Cl_2$ requires C, 50·2; H, 4·2; N, 25·1; Cl, 14·1%).

 α -(4-Chloro-5-p-chlorophenylazo-2-dimethylamino-6-pyrimidylamino)deoxybenzoin.— α -(2:4-Dichloro-6-pyrimidylamino)deoxybenzoin (17.5 g.) and 2.5M-ethanolic dimethylamine (60 c.c.) were heated under reflux for 3 hr., and the solid which separated on cooling (17 g.; m. p. 178—183°) was collected and dissolved in acetic acid (200 c.c.) together with crystalline sodium acetate (19 g.). To this solution *p*-chlorobenzenediazonium chloride [from *p*-chloroaniline (6 g.), sodium nitrate (3.4 g.), concentrated hydrochloric acid (10 c.c.), and water (34 c.c.)] was added. After four days' stirring the *azo-compound* was collected, washed with water and ethanol, and crystallised from butanol, then having m. p. 254° (decomp.) (10 g.) (Found : C, 61.8; H, 4.1; N, 16.9; Cl, 14.5. C₂₆H₂₂ON₆Cl₂ requires C, 61.8; H, 4.4; N, 16.7; Cl, 14.1%).

 α -(5-p-Chlorophenylazo-2: 4-bisdimethylamino-6-pyrimidylamino)deoxybenzoin.—The above chloropyrimidine (10 g.) was heated under reflux for 20 hr. with 2.5M-ethanolic dimethylamine (340 c.c.). The diamino-compound (5.5 g.) which separated on cooling crystallised from ethanol and had m. p. 179° (Found : C, 65.7; H, 5.4; N, 19.2; Cl, 7.4. C₂₈H₂₈ON₇Cl requires C, 65.4; H, 5.5; N, 19.1; Cl, 6.9%).

The following were obtained similarly: ω -p-chlorophenyl- ω -(4-chloro-5-p-chlorophenylazo-2dimethylamino-6-pyrimidylamino)acetophenone, m. p. 248° (decomp.) (from butanol) (Found : C, 58.0; H, 3.7; Cl, 19.8. C₂₆H₂₁ON₆Cl₃ requires C, 57.8; Cl, 3.9; H, 19.8%), and ω -p-chlorophenyl- ω -(5-p-chlorophenylazo-2-dimethylamino-6-pyrimidylamino)acetophenone, m. p. 196° (from butanol) (Found : C, 60.5; H, 5.1; N, 19.0. C₂₇H₂₅ON₇Cl₂ requires C, 60.7; H, 4.7; N, 18.4%).

4-Chloro- ω -(5-p-chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)- ω -phenylacetophenone.—4-Chloro- ω -phenylacetophenone hydrochloride (14·1 g.) was dissolved in water (800 c.c.) and basified with ammonia. The free amino-ketone was collected, dried over phosphoric oxide, and added to a solution of 4-chloro-5-p-chlorophenylazo-2-dimethylamino-4hydroxypyrimidine (7·8 g.) in dimethylformamide (400 c.c.). After 24 hours' stirring at room temperature the separated solid was collected and crystallised from dimethylformamide-ethanol. The ketone (7 g.) had m. p. 239° (Found : C, 60·0; H, 4·8; N, 16·4; Cl, 13·5. C₂₆H₂₂O₂N₆Cl₂ requires C, 59·9; H, 4·2; N, 16·1; Cl, 13·6%).

Ethyl 4-Amino-5-p-chlorophenylazo-2-dimethylamino-6-pyrimidylaminoacetate.—To a solution of glycine ethyl ester (5.6 g.) in ethanol (100 c.c.), 4-amino-6-chloro-5-p-chlorophenylazo-2-dimethylaminopyrimidine (5.5 g.) in dioxan (150 c.c.) was added and the whole heated under reflux for 8 hr. Unchanged pyrimidine which separated on cooling was filtered off and the filtrate diluted with water. The precipitated solid was collected, crystallised from ethyl acetate-light petroleum (b. p. 60—80°), and recrystallised from ethanol, to give the ester (2 g.), m. p. 139° (Found : C, 50.9; H, 5.0; N, 26.1. C₁₆H₂₀O₂N₇Cl requires C, 50.9; H, 5.3; N, 26.0%). Further examples of compounds of this type are given in B.P. 763,043. Ethyl 5-p-chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylaminoacetate, m. p. 218° (Found : C, 50.7; H, 5.2; N, 22.6; Cl, 9.6. C₁₆H₁₉O₃N₆Cl requires C, 50.7; H, 5.0; N, 22.1; Cl, 9.4%), was prepared similarly.

Ethyl 4-Chloro-5-p-chlorophenylazo-2-methylamino-6-pyrimidylaminoacetate.—p-Chlorobenzenediazonium chloride (17 c.c. of 0.01M-solution) was added to a solution of ethyl 4-chloro-2-methylamino-6-pyrimidylaminoacetate (2.5 g.) in 50% acetic acid (160 c.c.) containing crystalline sodium acetate (10 g.). After 12 hours' stirring the *azo-compound* was collected and crystallised from butanol; it (2 g.) had m. p. 218° (Found : C, 46.7; H, 4.4; N, 22.6. $C_{15}H_{16}O_2N_6Cl_2$ requires C, 47.0; H, 4.2; N, 21.9%). Ethyl 4-chloro-5-p-chlorophenylazo-2dimethylamino-6-pyrimidylaminoacetate, m. p. 214° (from dioxan) (Found : C, 48.4; H, 4.5; N, 20.7; Cl, 18.4. $C_{16}H_{18}O_2N_6Cl_2$ requires C, 48.3; H, 4.6; N, 21.1; Cl, 17.9%), was obtained similarly.

7:8-Dihydropteridines.—2-Dimethylamino-7:8-dihydro-4-hydroxy-6-phenylpteridine. ω -(5p-Chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)acetophenone (1.2 g.) in glacial acetic acid (60 c.c.) was treated at the b. p. in an atmosphere of nitrogen with zinc dust (1.1 g). The mixture was heated for a further 1 hr., then filtered hot. Removal of the solvent under reduced pressure gave an oil which was triturated with ether and filtered. The residue after being washed with ether was dissolved in dilute hydrochloric acid, and the solution evaporated under reduced pressure. The hydrochloride was triturated with ethyl acetate, collected, and dissolved in water. Basification of this solution with ammonia gave the base (0.1 g.) which after crystallisation from ethanol as the hemihydrate had m. p. 311° (Found : C, 60.1; H, 5.9; N, 25.0. $C_{14}H_{15}ON_{5,\frac{1}{2}}H_{3}O$ requires C, 60.4; H, 5.8; N, 25.2%), λ_{max} , 270 mµ ($E_{1,m}^{14}$, 750 in N-HCl). The following were made similarly: 2: 4-bisdimethylamino-7: 8-dihydro-6: 7-diphenylpteridine, m. p. 278° (Found : N, 200; Cl, 8.8. C₂₂H₂₅N₆Cl requires N, 206; Cl, 8.7%); 7-p-chlorophenyl-2-dimethylamino-7:8-dihydro-4-methylamino-6-phenylpteridine, m. p. 267-269° (although not obtained analytically pure it was oxidised satisfactorily to the pteridine. see below); 6-p-chlorophenyl-2-dimethylamino-7:8-dihydro-4-hydroxy-7-phenylpteridine hydrochloride, m. p. 346° (Found : C, 57.4; H, 5.0. C₂₀H₁₉ON₅Cl,HCl requires C, 57.7; H, 4.6%).

6-p-Chlorophenyl-2-dimethylamino-7 : 8-dihydro-4-hydroxypteridine. 4-Chloro-ω-(5-p-chlorophenylazo-2-dimethylamino-4-hydroxy-6-pyrimidylamino)acetophenone (2.95 g.) in dimethyl-formamide (300 c.c.) was shaken in hydrogen (initial pressure 2 atm.) for 2 hr. in presence of Raney nickel (5 g.). After removal of the catalyst and solvent the residue was triturated with ether and the solid collected. Crystallisation and recrystallisation from aqueous dimethyl-formamide gave the *pteridine* (1.8 g.), m. p. 370° (Found : C, 55.0; H, 4.3; N, 22.5; Cl, 11.8. C₁₄H₁₄ON₅Cl requires C, 55.4; H, 4.6; N, 23.1; Cl, 11.8%).

In the following case the dihydro-compound was oxidised during manipulation :

2-Dimethylamino-4-hydroxy-7-phenylpteridine. α -(5-p-Chlorophenylazo-2-dimethylamino-4hydroxy-6-pyrimidylamino)- α -phenylacetaldehyde dimethyl acetal (5 g.) was treated in glacial acetic acid (100 c.c.) with concentrated hydrochloric acid (10 c.c.). After 1 hr. at room temperature water was added and the precipitate collected. The crude aldehyde was reduced directly with hydrogen in the presence of Raney nickel as above. After removal of the catalyst and solvent the oily residue was mixed with glacial acetic acid (10 c.c.) and triturated twice with ether. The oil remaining was dissolved in 2N-hydrochloric acid; the white solid which separated after a short while was suspended in water and treated with dilute ammonia until the mixture was just alkaline to Brilliant Yellow. The *pteridine* (2·3 g.) was collected and crystallised from aqueous dimethylformamide, having m. p. 326° (decomp.) (Found : C, 62·9; H, 4·9; N, 25·8. C₁₄H₁₈ON₅ requires C, 62·9; H, 4·9; N, 26·2%). λ_{max} . 355 mµ (E_{1m}^{10} , 800 in N-HCl).

4-Amino-2-dimethylamino-6-hydroxy-5-phenacylideneaminopyrimidine.—4:5-Diamino-2-dimethylamino-6-hydroxypyrimidine sulphate (10.7 g.), phenylglyoxal monohydrate (6.1 g.), crystalline sodium acetate (27 g.), and 50% (v/v) ethanol (400 c.c.) were heated under reflux for 15 min. The solid which separated on cooling was collected and crystallised from ethanol, to give the aldimine (7.5 g.), m. p. 267° (decomp.) (Found : C, 59.1; H, 5.5; N, 24.2. $C_{14}H_{15}O_2N_5$ requires C, 59.0; H, 5.3; N, 24.5%).

2-Amino-3-N-methylcarbamoyl-5: 6-diphenylpyrazine.—Methyl 3-amino-5: 6-diphenylpyrazine-2-carboxylate (1 g.) was heated for 16 hr. at 160° with methylamine (10 g.) in ethanol (55 c.c.). After removal of the solvent the residue was crystallised from ethanol, to give the amide (0.5 g.), m. p. 197—198° (Found : C, 71.0; H, 5.4; N, 18.5. $C_{16}H_{16}ON_4$ requires C, 71.1; H, 5.3; N, 18.4%).

2: 4-Disubstituted Pteridines.—These have been made by a number of methods of which the examples given are typical; details of other compounds are given in Table 4; additional examples are recorded in B.P. 763,044.

(1) Oxidation of a 7: 8-dihydropteridine. 2-Dimethylamino-4-hydroxy-6-phenylpteridine. To 2-dimethylamino-7: 8-dihydro-4-hydroxy-6-phenylpteridine (0.2 g.) in 0.5N-sodium hydroxide (50 c.c.), potassium permanganate (0.1 g.) in water (15 c.c.) was added with stirring during 15 min. After a further 1.5 hr., ethanol was added to destroy excess of permanganate, and the manganese dioxide was removed by filtration and washed. The filtrate and washings were

[1957]	Boon : Pteridines.	Part IV.	2155
19-3 19-3 19-3 19-3	CI 12:2 13:2 11:6 11:6 11:6 11:6 11:0 0:9	27.1 9.6 28.7 9.1 32.1 10.2 32.1 10.2 32.1 10.2 N N S 38.0 7.2 30.5 11.6 29.1 11.1	12.1 11.4 12.5 9.5
d (%) N 228.3 27.0 25.8 28.2 28.2 28.7 28.7	Required (%) H N 4.3 35.3 4.3 35.3 4.8 33.6 7.0 29.9 4.8 33.6 7.0 29.9 8.1 27.3 5.2 32.1 5.2 32.1 5.2 32.1 5.3 20.3 6.1 27.3		28 2 31 6 2 1 9 2 1 9 2 1 9
Required (%) H N 3.4 28.3 3.9 27.0 3.9 27.0 3.9 27.0 5.1 28.2 5.1 28.2 4.9 26.7			0000 0000 0000
0.000000000000000000000000000000000000	C C 54-5 54-5 55-1 55-1 55-1 55-1 55-1 55-1		28:2 27:1 34:5 35:7 35:7
Z = C). Formula C, H, N, N, C, H, N, N, C, H, N, N, C, H, N, N, C, C, H, H, N, S, C, H, H, N, N, S, C, H, H, N, N, S, C, H, H, H, N, S, C, H, H, H, N, S, C, H,	For concord and co	$\begin{array}{c} C_{16}^{CI}H_{16}^{H}ON_{CI}^{CI}\\ C_{16}^{H}H_{17}^{H}N_{CI}^{CI}\\ C_{16}^{H}H_{11}^{H}N_{6}^{H}CI\\ C_{16}^{H}H_{11}^{H}N_{6}^{H}\\ CI^{H}H_{11}^{H}N_{6}^{H}\\ CI^{H}H_{10}^{H}O\\ H_{10}^{H}OO_{1}^{H}H_{10}^{H}O\\ SO_{10}^{H}H_{10}^{H}O\\ SO_{10}^{H}O\\ SO_{$	C,H,1,N,H,SO,H,O C,H,1,N,H,SO, C,H,1,N,H,SO, C,H,1,N,H,SO, C,H,1,0,N,J,5O, C,1,H,1,0,N,H,SO, C,1,H,1,0,N,H,SO,
	94.83 11119 159 11119 159 100 11119 159 100 100 100 100 100 100 100 100 100 10	9.8 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(as III]; CI CI CI 22.9 22.9 21.1 19.0 19.0 119.0	N 29.4 33.5 33.5 33.5 33.5 33.5 33.5 29.4 33.5 33.5 33.5 29.4 29.4 29.4 20.5 33.5 20.	direct reaction of direct $C = 27.4 + 9.8$ direct reaction of $31.9 + 10.3$ $C = NH_2$. $C = NH_2$. C = 10.3 C = 10.3	
dines (Found (%) H H A N A 4-1 34-4 6-9 33-5 5-5 33-6 6-1 33-3 6-1 32-3 5-5 32-0 5-1 22-3 5-5 32-0 5-1 22-3 5-5 32-0 5-1 22-3 5-5 32-0 5-1 22-3 5-5 23-5 5-5 23-5 5	6.3 6.3 6.3 6.3 6.3 7.2 11; Z 11; Z 11:0 11:0 5	11-9 9-6 12-0 9-3 9-3
ppyrimidiue Found (%) H H Sass 3.6 3.7. 3.8 2.7. 3.8 2.7. 3.8 2.7. 3.6 5.2 5.3 5.4 5.3 5.4 5.5 5.5 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7	50214 50200000000000000000000000000000000000	1 52.9 55.5 52.4 1 52.4 55.5 52.4 1 52.4 1 52.4 1 52.4 1 52.4 1 52.4 1 52.4 1 1	28.4 31.2 30.5 27.0 22.2 decomp.
lazo-4-chloropyrin Four C H 26 44.4 3.3 44.4 3.3 44.4 3.5 44.4 3.6 44.4 3.6 44.9 3.7 45.9 3.7 410 3.7 5.2 41.8 4.2 41.8 4.2 6.3 41.8 4.2 6.3 4.3 4.2 6.3 4.3 4.2 6.3 4.3 4.2 6.3 4.3 4.2 6.3 4.4 4.3 5.6 6.3 4.4 4.3 5.6 6.3 4.4 4.3 5.6 6.3 4.4 5.6 7 5.7 5.7 5.2 6.3 4.4 5.3 5.6 6.3 7.6 5.2 6.3 4.4 5.5 5.2 6.3 4.5 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	Yield Yield 96 96 96 70 85, 92 90, 79 ↑ 80 95 93	91 91 94 90 90 90 90 90 90 60 60 60 60 60 85 90 85 90 90 90 90 90 90 90 90 90 90 90 90 90	= With
: 6-Diamino-5-arylazo-4-chloropyrimidiues (as IIII; Z Solvent • $Yield$ Found (%) Solvent • $\binom{\%}{6}$ C H N Cl DMF DMF-EtOH 65 46.3 3.8 27.4 - DMF-MeOH 96 44.4 3.5 - DMF-MeOH 96 44.4 3.5 - DMF-MeOH 96 44.9 3.7 27.9 22.6 - BUOH 90 47.8 4.2 28.9 - BUOH 90 47.8 4.2 28.9 - BUOH 78 53.7 5.2 28.9 - BUOH 78 50.0 - BUOH	Starting material : I; Y = NH4, NHMe NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.4 29.4 36.0 36.0 8 36.0 8 4 3 36.0 8 3 36.0 8 37.0 8 36.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 36.0 8 37.0 9 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 37.0 8 9 8 8 9 8 9 8 9 8 8 8 8 8 9 8 8 9 8 8 9 8 9 8 8 8 9 8 8 9 8 8 9 8 8 8 8 8 8 9 8
amino ato EtOH MeOH MeOH - D	Star II: Star II: MHH NNNH NNNH NNNNH NNN NHH	NH2 bet NHA bet NHA bet NHA bet NHA set Set Set Set Set Set Set Set Set Set S	58 98 98 13 33 33 33 33 33 33 33 33 33 33 33 33
	Solvent • BuOH DME-H ₄ O ECOH-H ₄ O BuOH EtAC DMF-H ₂ O BuOH BuOH BuOH BuOH	BuOH BuOH $00-80^{\circ}$ Pet $100-120^{\circ}$ Pet $100-120^{\circ}$ Pet $100-120^{\circ}$ Pet $100-120^{\circ}$ Pet TABLE 3. Tetra- Yield Solvent Y_{10}° H ₁ O H ₂ O-EtOH 10° H ₂ O-EtOH 10° 1	1,0-етон 1,0 1,0 1,0-етон 1,0-етон 1,0-етон
BLI	M. P. 213° 205 139 184 184 181 193 203 275	церни 1883 1883 144 144 144 144 144 144 144 144 144 14	
TA P-C ₆ H ₆ Cl Ph Ph P-C ₆ H ₆ Cl	HN. ⁵	$^{>N}$ NH 18 12 NH 18 12 NH 18 13 and and and 14 M. p. $^{\circ}$ 2560 2560 259 193	2930 314d 273d 182d 208d 194d
Y NHMe NHMe NHMe NHMe NHMe NHMe NHMe NHMe	Y NHMe NMC NMC Et ₁ N'[CH ₁], NH Et ₁ N'[CH ₁], NH NHA NHMe NHMe NHMe NHMe NHMe NHMe		инме NH, NHMе NMe, [CH ₁],>N O<[CH ₁],>N
X NH4 NH4 NH4 NHM6 NHM6 NHE4 NM62 NM62 NM62 NM62	X NH ¹ , NH ² NH ² NHMe NHMe NMMe ₂ NMe ₂	NMC2 NMC3 NMC3 NMC3 • DMF = 0 and also from and also from X NH3 NH4 NH4 NH4 NHM6 NH4 NHM6 NH4 NHM6 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4	

														-			•		- 1		- 0			- •		~ '			- /	•											
	()	ßا	1	11	1	I	۱	12:4	12:4	1	1	I	1			I	11.8	1		17.3			1	1	1	1	11	1	-	11-8	•	*		1	1	9·1	١		١		<i>.</i> :
	Required (%)	z	47.7	24.6	23.0	27.7	27-7	24·1	24.1	52 52 52 52	47.7	41.2	0.07	38.5	31.6	31.6	28.0	24.6		20- 4	90.06	19.5	24.7	26.3	26·1	34.0	23.6 23.6	26.4	26·4	23.2	19.5	23.7		24.6	23.6	21.5	27-8	28.6	22.7	20-5 20-5	route
	tequir	H	4.5	9 9 9	8.8	4.4	4.4	s v v	0.0 0.0	4.8 7	4 0 0	A 0	4 v	6.4 8	1 G 1 G	2.5	4.3	5.3		3.9	R. F	0 4 0 0	4.7	4 ·8	4.4	6.4 9	0.0 9.9	4·4	4.4	4.0 0.4	0.0	9 00 1 00		5.3	5.6	4.9 6.4	9.9 9.9	5.6	5.9	0 0 0 0 0 0 0	a different
	щ	ပ	47.7	0.40	70.3	61.7	61.7	64·3	04:0 0	69-3 1 - 3	47.7	A-20	0.60	56.1	63.9	63.2	6.99	70·1		·58·4	86.7	61÷4	70.8	66·1	59-6 2	58.3	0.02	62.9	62-9	55.7	10.0 83.5	86·1		70.2	70.8	64-6	63.6 85.9	86·3	71-4	73-3 69-9	a difi
		ę				. ••	. 10	ರ್ಷ	5	-0							л П		ก็		- -		p	H ₀) 	0ªH		-		ವ್ತ	ູ	Į,	5							_	ed by
		Formula	z	i z	Z				H ¹⁰ ON	C19HigON6	z	Z			Z	z	N	Z	N ^I			H.O.N	Z	N		N ²		C, H 30N	NO	C ₁₄ H ₁₂ ON		NO.	:	N	Z	N	z	ĮZ	z	z o	repar
		μ.	C,H		U U	т С	C. BH	н С С	J L L L	C H H H H H H	H S	ri Se		יין גר		E C	C, H	C. H	H C				H S	C ^T H	C E E	E E E E E E E	ς π 5 - 5	E U U	C, H	E E E	קם זכ	L H L H L H	:	C. H	C.H	E C C		C, H, N	C.,H	C, H, O	nce p
		រ	1		1	١	I	13.2	11-7	1	1	1	I			۱	11.5	1	I	1.51	7.11		1	I	I	1	1 1	1	1	11-7	13	#		1	ł	9.2 1	1		1		substance prepared
	Found (%)	z	47.5	24.3	23.6	28.0	27.3	23. 0	23.2	52. 72. 72.	47.7	41.3	20.07	38.9	31.4	31.2	27.9	24.6	l	20·1	0.02	19.5	24.4	25-9	26.7	33.9	23.3	28.6	26.0	23.9	0.07	23.7		26-0	23.7	21.5	28.2	28.6	23-2	21.0 20.4	this
	Found	H	4.2	2 2 4	6.5	4 ·6	4.4		20 I	4.7	4. 4.	- 1 0 1	0 9	0.0	5.4	20	4.4	5.3	3.2 3	8 8 9	9 4 X	- 4 - 6 - 6	4-7	5.0	4	0.0		4.8 8	4 .8	4 v 0 v	0.4			5.1	5.9	4.9		9.4 4.4	6.2	6 40 40	6° for
÷		ပ	47.8	69-4	70.1	61 ·0	61.7	54.7	63-9	69-4	47.4	1.20	2.A0	54.0	83.3	63-3	55.6	70-3	58.83	58·3	00.00 86.1	6.09	70.5	6.30	59-6 29-6	20.1	# C	62.5	63-0	55-8 80-0	8.AO	86-3		6.69	69-1	640	63-7 85.7	66-4	71-3	73-6 69-5	
pteridines (I	b la) %	56					50, 26							200			49		31												88				20		20		75 71	P. 19([E]
pteri	5		сч <u>с</u>	ŝ		-	80,	0°.	ĝ,	00 I	- 1	φι	- 1	90	1 67		2	4	21	co q	- 0	1 01	æ	4	01 1	- a	0	Е 15,	65, 9	00 6	o a			90 -	4	- (ŝ	32,	Ω.	~ ~	dn.
tuted		Prep.	2 [°]	2c, 3	20	2b	2a, 4	1, 2 ^b	2a, 4	40	ŝ	N C	2	30	i	24	2b	20	50	20	20	3 8	3	5 C	20	20	200	29,4	2b, 4	- °	¥ -	EtOH on	4-Cl-com-	2c	2c	- 0	, , , ,	2b, 3	20	22	tall record m. p. 19. λ_{max} . 365 m μ (E_{1}^{1}
Disubstitutea		+- +-						HO										HO				MF							OH 1	HO	5	ы	4			¢	ç			o,	Henshall). ³ A _m
1-Dis		Solvent	H,O	58	EtOH	H	E	話 出 日	<u>-</u>	٤		Ŧ:			E E	MeOH	E	DMF-Et	BuOH	HOH	DMF E+OH	EtOH-D	E	Æ	EtOAc	<u>نا</u> ب	HC	H	DMF-Et	DMF-EtOH		MeOH		BuOH	EtOAc	H		EtOH	EtOAc	H-H(
ે. ભ		ۍ •	Ξŕ			7	DMF		•••	•••	I,		TMU TMU		E MUC	Me	DMF	M D	Bu	MeOH		ц Ц Ц	DMF	DMF	Щ Ш	DMF	E+OH	EtOH	N A		Ϋ́́	Me		Bu(표	ם	필립	រដ	Щ Ш	EtOH EtOH	er and 1% 95
Е 4 .		M. p.	248°	212 322 d	201 1	356 d	387 d	370 d	363 d	365 d	242	187	202	288 288	284	256 3	2943	262	265	256	070 9 K 0	297	311	307	218	338	300 249	336 d	326 d	377 d 281	260 260	88 88		239	205	239	160	191	211	207 216	аттіde. † Potter a. Л _{тат.} 365 тµ (E ¹ %.
TABLE																						.Н.																			le. ‡ .365 .
•		к,						;									1		1	ក		0	90	e																	ethylformamide 566). ² λ _{mar.} 3
							-		J"H")	-		4)	_		,	_	C,H,C	, ,	C,H,C	H H Q		4-CH	hrylei	thýlen	Furyl	9 2			_			_		-	_	O'H'O	-	_	_		thylforr 566). 1
			щà	디디	E.	H	۲ ۲	H	¢.i	답:	Ξ;	Ž	25	¢ Ż	Ĭ	i di	\$	Å,	6	#	6.4	H. 3:	enant	naphi	сч ,	: 3-Indolo	김 효	Ħ	ц Ц	ΞÂ	1 A	ΞĦ		Ч	Ч	4	23	ដ ដ	ዋ	묘묘	
																						_0	9:10-Phene	8-Acena		53															DMF = dim 50 m μ (E ¹ $\%$.
		Я						H,C											H,CI	С, Н		CH O	6	7:	ጅ					H,CI	0 1										$f DMF = \dim 350 m\mu (E_{1}^{3})$
			ΞĒ	립신	Ph	ፈ	H	P-C,H,CI	Ξi	섭:	ц;	Me	뷥		۲ ۲	H	H	ЪЪ	ပုိ) -)		2-Furyl	L L	ደ ድ	멉	H	P-C,HCI		Photon Photon		$^{\mathrm{Ph}}$	ጜ	៩	දු ද	H	R	ቘ፟፟ቘ	р. † 966), 3
					HN.																																			X ^	= with decomp. 1. 280 $(E_1^{1\%}, 966)$
		Х	9	Ð	[CH.]	2								טים	5 6	۵	6	e	e	e (പം	0 0	6	a	a	പ	٩	,							e)	a				N / H	vith d 80 (E
			NHMe	N Me	Et N	HO	но	HO	HO	HO	HH.	LH.	NH.	MHN	MHN	MHM	NHMe	MHM	NHMe	NHMe	NHMe	NHMe	NHMe	NHMe	NHMe	WHN	NHMe.	НО	но	HO		u 百 日 日 日		NH.	NHMe	WHN	NMe.	NMe.	NMe.	[CHa]a>N O<[CHa]a>N	$d = with decomp.$ $\lambda_{max}. 280 (E_1^{1} \& .966),$
		×			, ,	NHMe			NHMe		NHMe		NHMe			NHMe				NHMe					NHMe							NMe,								NMe.	
			E2	HN.	Ż	Ż	Ż	Z;	Ż	Ż	Ż	Z	ZZ	35	Ż	Ż	Ż	Z	Ï	Ē	ZĘ	Ë	E	Ż	Ż!	ŻŻ	ŻŻ	Ź	Ź	22	12	źŹ		ĨZ	Ź	É.	25	Ē	Ź	ŹŹ	

TABLE 4. 2: 4-Disubstituted pteridines (I).

2156

Boon: Pteridines. Part IV.

concentrated to about 50 c.c., acidified to Congo-red with hydrochloric acid and then neutralised with ammonia. The *pteridine*, crystallised from ethanol, had m. p. 322° (decomp.) (Found : C, 62.5; H, 4.8; N, 25.5. C₁₄H₁₈ON₅ requires C, 62.9; H, 4.9; N, 26.2%), λ_{max} 280 (E_{1}^{1} %, 910), 355 mµ (E_{1}^{1} %, 395).

(2) Condensation of a 4:5-diaminopyrimidine with an α -diketone. (a) With phenylglyoxal at pH >4. 2-Dimethylamino-4-hydroxy-7-phenylpteridine, identical in m. p. and mixed m. p. with the product obtained by reduction, was obtained by warming 4-amino-2-dimethylamino-6-hydroxy-5-phenacylideneaminopyrimidine with dilute sodium hydroxide. Acidification of the mixture with acetic acid gave the pteridine.

The preparation of 2:4-bisdimethylamino-7-phenylpteridine is typical of those cases in which the intermediate compound is not isolated: 4:5-Diamino-2:6-bisdimethylamino-pyrimidine sulphate (2.94 g.), crystalline sodium acetate (6.8 g.), phenylglyoxal monohydrate (1.5 g.), and 50% v/v ethanol were heated under reflux for 15 min. The solid which separated on cooling was collected, dissolved in 2N-acetic acid, and the solution filtered (charcoal). The *pteridine* was precipitated from the filtrate with ammonia and, crystallised from butanol and then from ethanol, had m. p. 191° (Found: C, 65.4; H, 6.4; N, 28.5. C₁₆H₁₈N₆ requires C, 65.3; H, 6.1; N, 28.6%).

(b) With phenylglyoxal at pH < 1. 2-Dimethylamino-4-hydroxy-6-phenylpteridine. 4:5-Diamino-2-dimethylamino-6-hydroxypyrimidine sulphate (7.43 g.), 6N-sulphuric acid (250 c.c.), phenylglyoxal monohydrate (3.7 g.), and ethanol (250 c.c.) were heated under reflux for 2 hr. After removal of the ethanol under reduced pressure the solution was cooled in ice, basified with ammonia, and separated from a small flocculent precipitate. The *pteridine* which separated on acidification to litmus with dilute acetic acid was collected and crystallised from dimethylformamide-ethanol. It had m. p. 332° (Found : C, 62.5; H, 4.8; N, 27.0. C₁₄H₁₉ON₆ requires C, 62.9; H, 4.4; N, 26.4%).

(c) With a symmetrically substituted α -diketone. 4-Methylamino-2:5:6-triaminopyrimidine sulphate (10.8 g.), benzil (14.8 g.), crystalline sodium acetate (24 g.), ethanol (400 c.c.), and water (100 c.c.) were heated under reflux for 5 hr. The product which separated on cooling was collected and extracted with 0.5N-hydrochloric acid. Basification of the extract with ammonia gave 2-amino-4-methylamino-6: 7-diphenylpteridine which, crystallised from ethanol, had m. p. 272° (Found : C, 69.4; H, 4.9; N, 25.8. C₁₉H₁₆N₆ requires C, 69.5; H, 4.9; N, 25.6%).

(3) Replacement of a 4-hydroxy- by a 4-amino(or substituted amino)-group via the chlorocompound. 2-Amino-4-methylamino-6: 7-diphenylpteridine, identical (m. p. and mixed m. p.) with the above, was obtained as follows: 2-Amino-4-hydroxy-6: 7-diphenylpteridine (2 g.) and redistilled phosphorus oxychloride (120 c.c.) were heated under reflux for 2 hr. After removal of excess of phosphorus oxychloride under reduced pressure, the residual glass was heated with $2\cdot5M$ -ethanolic methylamine (100 c.c.) for 1 hr. The dark red oily solid which remained after removal of the solvent was extracted with $0\cdot5N$ -hydrochloric acid. The pteridine was isolated from this extract as above.

In a similar sequence of reactions with 2-dimethylamino-4-hydroxy-6-phenylpteridine and alcoholic dimethylamine, in addition to 2: 4-bisdimethylamino-6-phenylpteridine (m. p. 190°; from methanol) (Found : C, 65.7; H, 6.4; N, 28.1. C₁₆H₁₈N₆ requires C, 65.3; H, 6.1; N, 28.6%), which was extracted from the crude dimethylamination product with 2N-acetic acid, there was also obtained 2-dimethylamino-4-ethoxy-6-phenylpteridine, m. p. 200° (from ethanol) (Found : C, 65.3; H, 6.1; N, 23.7. $C_{16}H_{17}ON_5$ requires C, 65.1; H, 5.8; N, 23.7%). By using the conditions of Cain et al.⁹ there was obtained from 2-amino-4-hydroxy-6: 7-diphenyl pteridine a product, m. p. 253–259°. Extraction of this with 1.5N-acetic acid left 2-amino-3-N-methylcarbamoyl-5: 6-diphenylpyrazine, m. p. and mixed m. p. 197-198° with an authentic sample (after crystallisation from ethanol). Basification of the extract with ammonia and crystallisation of the precipitate from ethanol gave 2: 4-bismethylamino-6: 7-diphenylpteridine, m. p. 266—267°, undepressed on admixture with an authentic sample obtained by condensation of 4:5-diamino-2:6-bismethylaminopyrimidine with benzil (Found: C, 70.3; H, 5.3; N, 24.6. $C_{20}H_{18}N_6$ requires C, 70.1; H, 5.3; N, 24.6%). The same product was obtained by reaction between 4-amino-2-mercapto-6:7-diphenylpteridine and alcoholic methylamine under the conditions described by Taylor and Cain.¹⁰ Repetition of the similar reaction between 4amino-2-mercapto-6: 7-diphenylpteridine and alcoholic dimethylamine gave a product, m. p. 186—215° (Taylor and Cain give m. p. 192—195°): trituration of this with cold 0.5N-acetic acid left a residue which on repeated crystallisation from methanol had m. p. 211° undepressed

on admixture with an authentic sample of 2: 4-bisdimethylamino-6: 7-diphenylpteridine (Found: C, 71.3; H, 6.2; N, 23.2. $C_{22}H_{22}N_6$ requires C, 71.4; H, 5.9; N, 22.7%) obtained by condensation of 4: 5-diamino-2: 6-bisdimethylaminopyrimidine and benzil. Basification of the acetic acid extract with ammonia gave a substance, m. p. 221—228° raised to 236° by crystallisation from butanol and undepressed on admixture with an authentic sample of 4-amino-2-dimethylamino-6: 7-diphenylpteridine (Found: C, 69.9; H, 5.1; N, 25.0. $C_{20}H_{18}N_6$ requires C, 70.2; H, 5.3; N, 24.6%), obtained by condensation of 4: 5: 6-triamino-2-dimethylamino-pyrimidine and benzil.

(4) Hydrolysis of a 4-amino(or substituted amino)pteridine. 2: 4-Bismethylamino-7-phenylpteridine (0.3 g.) and 6N-hydrochloric acid (50 c.c.) were heated under reflux for 20 hr. After cooling to about 50°, the solution was made faintly alkaline to Brilliant Yellow by ammonia. 4-Hydroxy-2-methylamino-7-phenylpteridine was collected, washed with water, dried, and crystallised from dimethylformamide; it had m. p. 387° (decomp.) undepressed on admixture with a sample prepared by method 2a (Found : C, 61.7; H, 4.4; N, 27.3. $C_{13}H_{11}ON_5$ requires C, 61.7; H, 4.4; N, 27.6%); λ_{max} . 250 mµ (E_{1m}^{1m} , 700).

 α -Bromo- α -phenylacetaldehyde Dimethyl Acetal.*—To a solution of styryl acetate ¹² in carbon tetrachloride (290 c.c.), bromine (39 c.c.) in carbon tetrachloride (40 c.c.) was added with stirring below 10° during 1½ hr. Methanol (290 c.c.) was then added and stirring continued for a further 12 hr. at this temperature. After a further 48 hr. the mixture was poured into ice-water. The oil which separated was collected, washed with 5% w/w sodium hydrogen carbonate solution, dried (MgSO₄), and distilled in presence of a little anhydrous sodium carbonate. The acetal (122 g.) had b. p. 138—140°/14 mm.

 α -Benzylamino- α -phenylacetaldehyde Dimethyl Acetal.*— α -Bromo- α -phenylacetaldehyde dimethyl acetal (122 g.), benzylamine (183 g.), and a trace of sodium iodide were heated to 140° during 1 hr. When the reaction had moderated heating was continued at 160° for a further 2 hr. After cooling, the mixture was poured into water, and the product collected with ether, dried (MgSO₄), and distilled. The base (89 g.) had b. p. 121—148°/0·2 mm. (Found : N, 5·7. C₁₇H₂₁O₂N requires N, 5·2%).

 α -Amino- α -phenylacetaldehyde Dimethyl Acetal.*—The above benzylamino-compound was hydrogenated in methanol (300 c.c.) over 5% palladised charcoal (25 g.) at 100—105° with an initial hydrogen pressure of 95 atm. After removal of the catalyst the aminoacetal (47 g.), b. p. 134—136°/18 mm., was isolated by distillation (Found : C, 65.6; H, 8.2; N, 7.8. C₁₀H₁₆O₂N requires C, 66.3; H, 8.3; N, 7.7%).

 ω -Aminoacetophenone Semicarbazone.*— ω -Aminoacetophenone hydrochloride (56 g.) was dissolved in ethanol (350 c.c.) with gentle warming and the solution cooled rapidly to room temperature. Semicarbazide (25 g.) was added and the mixture set aside for several hours. The prismatic crystals were filtered off and, crystallised from ethanol, had m. p. 107—108°.

 α -Amino-4-chlorodeoxybenzoin.—To 4-chlorobenzyl phenyl ketone (28 g.) in dry ether (500 c.c.) saturated with hydrogen chloride at 0° butyl nitrite (7.5 g.) in ether (50 c.c.) was added. The hydroxyimino-compound which separated immediately was collected and crystallised from aqueous methanol. It had m. p. 121—123° and was reduced at room temperature and pressure in ethanol (350 c.c.) containing concentrated hydrochloric acid (12 c.c.) in presence of palladised charcoal. After removal of the catalyst and solvent the amino-ketone hydrochloride (6 g.) was crystallised from 2N-hydrochloric acid and then from methanol—ether; it had m. p. 248° (decomp.) (Found : C, 59.8; H, 4.5; N, 5.1; Cl, 26.0. C₁₄H₁₃ONCl₂ requires C, 59.6; H, 4.6; N, 5.0; Cl, 25.2%).

I record my sincere gratitude to Messrs. G. Bratt and H. C. Brimelow for technical assistance.

IMPERIAL CHEMICAL (PHARMACEUTICALS) LIMITED, HEXAGON HOUSE, BLACKLEY, MANCHESTER, 9.

[Received, December 11th, 1956.]

- * These experiments were carried out by Dr. W. G. M. Jones.
- 18 Semmler, Ber., 1909, 42, 584.